
Compute-efficient neural network architecture
optimization by a genetic algorithm

Sebastian Litzinger Andreas Klos Wolfram Schiffmann
Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Germany

contact author: sebastian.litzinger@fernuni-hagen.de

Motivation

An artificial neural network’s (ANN) topology

greatly influences its ability to generalize

Neural architecture search (NAS) seeks to

optimize an ANN’s topology to facilitate high

prediction accuracy values and generalization

capability

The search space is huge, hence favouring

heuristic approaches

Genetic algorithms (GAs) have been shown to

deliver competitive results

Unfortunately, the computational effort is still

immense, calling for endeavors to raise

efficiency in order to enable NASwhen

computational resources are scarce

Contributions

We present a GA for ANN topology

optimization, which can be deployed

effectively in low-resource settings

Optimization aims for classification

accuracy as well as compact models

We provide experimental results based on

an implementation of the GA in Python, with

the ANN fitness evaluation component

utilizing the TensorFlow framework

We incorporate various techniques to

reduce the computational load

Raising Efficiency

Factor the number of free parameters into

fitness evaluation

Employ and extend early stopping technique

to dynamically find adequate duration of

training for any architecture

Python implementation ensures portability

and facilitates use of TensorFlow for the

evaluation component

Weight sharing and layer freezing have

massive impact on computational demand

(reduced by≈ 2/3)

Design of genetic operators promotes quick

convergence to high quality solutions

Constraints on architecture possible to force

“common” CNN topologies

NAS on the MNIST Dataset

Table 1. Recent results of NASmethods onMNIST

work test set accuracy

Ma & Xia (2018) 99.72%

Assunção et al. (2018) 99.70%

proposed approach 99.69%

Baldominos et al. (2018) 99.63%

Real et al. (2018) ≈99.50%

Mitschke et al. (2018) 98.67%

Genetic Algorithm

select
individual

create new
solution

determine
fitness

update

population

initialize
population

Figure 1. Generic genetic algorithm

Fitness criteria: prediction accuracy, number

of free parameters

Evolution bymutation: insert/delete/modify

layer, switch two layers

Evolution by recombination: crossover at

configurable number of crossover points

Layer modifications: in-/decrement of values

decaying over time, thus focus shifts from

quick exploration of solution space to refining

the best solutions

Selection step: roulette selection, two types of

tournament selection

Repeated training advisable for precise

evaluation (cf. Figure 2), configurable and

adaptable to accuracy and number of free

parameters

0

0.25

0.50

0.75

1.00

iteration

loss

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0

0.25

0.50

0.75

1.00

iteration

loss

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Figure 2. Different progression of training loss under equal

configuration of training

Experiments

Classification of theMNIST dataset

Determine parametrization for network

training and GA

Scenario 1: achieve same test set accuracy as

ANN from TensorFlow documentation with

minimal free parameter count

Scenario 2: achievemaximal test set accuracy

with fewer free parameters than ANN from

TensorFlow documentation

Results

Parametrization of training forMNIST problem:

AdaGrad training algorithm

He or Xavier initialization

Learning rate scheduling

Batch normalization for convolutional layers

Dropout regularization for dense layers

Results for scenario 1:

Test error rate: 0.60%

61,787 free parameters

1.9% the size of reference network

47 hours runtime onNvidia GeForce GTX

1050 Ti for 2000 iterations of GA

GA can reveal small yet well-performing

architectures – essential for ANNs operating

under firm real-time constraints

Table 2. Best architecture found for scenario 1

layer type dimensions kernel stride feature maps

input 28× 28

convolutional 14× 28 5× 5 2× 1 52

avg. pooling 14× 28 2× 3 1× 1

convolutional 14× 28 3× 2 1× 1 50

convolutional 7× 14 5× 3 2× 2 24

convolutional 4× 14 2× 5 2× 1 33

dense 10

Results for scenario 2:

Competitive test error rate of 0.31%

≈ 2.5m free parameters

Runtime: days on Nvidia Pascal consumer card

Endeavor to reduce resource consumption

does not impair quality of the results

Table 3. Best architecture found for scenario 2

layer type dimensions kernel stride feature maps

input 28× 28

residual 14× 28 3× 7 2× 1 254

convolutional 14× 28 2× 3 1× 1 102

residual 14× 28 6× 7 1× 1 86

residual 4× 7 5× 4 4× 4 16

residual 2× 4 4× 3 3× 2 114

convolutional 1× 4 1× 2 3× 1 170

dense 172

dense 10

Conclusions & Outlook

NAS via GAwith focus on computational

efficiency can deliver competitive results

MNIST dataset: singleNvidia Pascal

consumer card provides sufficient

performance

For larger datasets: run GA onmultiple

machines independently, occasionally

exchange information


