Compute-efficient neural network architecture
optimization by a genetic algorithm

Sebastian Litzinger Andreas Klos Wolfram Schiffmann

@ FernUniversitat in Hagen

Faculty of Mathematics and Computer Science, FernUniversitat in Hagen, Germany
contact author: sebastian.litzinger@fernuni-hagen.de

Motivation Genetic Algorithm Results
= An artificial neural network’s (ANN) topology Perametrization of training for MINIST problem:
oreatly influences its ability to generalize o

= AdaGrad training algorithm
= Neural architecture search (NAS) seeks to

optimize an ANN's topology to facilitate high l) . te ccheduli
prediction accuracy values and generalization -Cariing 14 e.SC ? IS |
capability = Batch normalization for convolutional layers

= The search space is huge, hence favouring
heuristic approaches

= Genetic algorithms (GAs) have been shown to e Results for scenario 1
deliver competitive results solution
= Jesterror rate: 0.60%

= He or Xavier initialization

= Dropout regularization for dense layers

= Unfortunately, the computational effort is still

Immense, calling for endeavors to raise
= 1.9% the size of reference network

efficiency in order to enable NAS when

computational resources are scarce = 4/ hours runtime on Nvidia GeForce GTX
1050 Tifor 2000 iterations of GA

= GA canreveal small yet well-performing

architectures — essential for ANNs operating
under firm real-time constraints

= 61,/8/ free parameters

Contributions Figure 1. Generic genetic algorithm

= We present a GA for ANN topology
optimization, which can be deployed
effectively in low-resource settings

= Fitness criteria: prediction accuracy, number
of free parameters

Table 2. Best architecture found for scenario 1

= Optimization aims for classification = Evolution by mutation: insert/delete/modify
aver, switch two layers layer type dimensions kernel stride feature maps
accuracy as well as compact models
= We provide experimental results based on = Evolution by recombination: crossover at input /28 X 28 /
an implementation of the GA in Python, with configurable number of crossover points convolutional 14 x 28— 5> x o> 2x1 52
the ANN fitness evaluation component - - ' ave. pooling 14> 28 =23 4 xd
= = Layer modifications: in-/decrement of values convolutional 14 x 28 3% 2 1x1 50
utilizing the Tensorklow framework decaying over time, thus focus shifts from convolutional 7x 14 5x3 2x2 24
= We incorporate various techniques to ' ' ' ' convolutional 4 x 14 2x5 2x1 33
. quick exploration of solution space to refining
reduce the computational loaa the best solutions dense 10
= Selection step: roulette selection, two types of
Raising Efficiency tournament selection Results for scenario 2:
= Repeated training advisable for precise
: : . i 0
= Factor the number of free parameters into evaluation (cf. Figure 2), configurable and Competitive test error rate or 0.31%
Atness evaluation adaptable to accuracy and number of free = ~~ 2.omfree parameters
= Employ and extend early stopping technique parameters = Runtime: days on Nvidia Pascal consumer card
to dynamically find adequate duration of = Endeavor to reduce resource consumption
training for any architecture does not impair quality of the results
= Python implementation ensures portability N
and facilitates use of TensorFlow for the 025 | Table 3. Best architecture found for scenario 2
evaluation component T T S PR
» Weight sharing and laver freezing have o5 layer type dimensions kernel stride feature maps
massive impact on computational demand input 28 x 28
(reduced by = 2/3)] residual 14 x 28 3x/ 2x1 254
, , . . convolutional 14 x 28 2x3 1x1 102
= Design of genetic operators promotes quick ~_ rasidua 14% 28 6x7 1x1 86
convergence to high quality solutions ek s e e ok T s Sk toderation residua 4 x7 5x4 4x4 16
= Constraints on architecture possible to force Figure 2. Different progression of training loss under equal esidtal 2 x4 Ax3 Ix2 3'14
« » CNIN tonologies configuration of training convolutional 1 x 4 1x2 3x1 1/0
common & dense 172
dense 10
NAS on the MNIST Dataset Experiments
Conclusions & Outlook
Table 1. Recent results of NAS methods on MNIST = Classification of the MNIST dataset
= Determine parametrization for network = NAS via GA with focus on computational
WOork test set accuracy training and GA efficiency can deliver competitive results
Ma &Xia (2018) 79.727% = Scenario 1: achieve same test set accuracy as = MNIST dataset: single Nvidia Pascal
Assuncao et al. (2018) 79.707% ANN from TensorFlow documentation with consumer card provides sufficient
proposed approach 99.69% minimal free parameter count performance
| O
Baldominos et al. (2018) 99630/0 = Scenario 2: achieve maximal test set accuracy = For larger datasets: run GA on multiple
Qegl ctal. (2018) %9950? with fewer free parameters than ANN from machines independently, occasionally
Mitschke et al. (2018) 78.0/7% TensorFlow documentation exchange information

