
Scheduling Moldable Parallel Streaming Tasks on
Heterogeneous Platformswith Frequency Scaling

Sebastian Litzinger 1 Jörg Keller 1 Christoph Kessler 2

1Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Germany
2Dept. of Computer and Information Science (IDA), Linköping University, Sweden

Motivation

Signal processing applications are often

implemented by a set of streaming tasks

Throughput requirement gives execution unit

maximum time span for single execution of

assigned tasks (one scheduling round)

Low energy consumption and low average power

consumption are desirable with regard to

purchasing, operational, andmaintenance costs

High throughput is desirable but power and

energy consumption are often constrained

Tasks may have to be executed in parallel (if

possible) to facilitate lowmakespan of round

Core operating frequency influences energy

consumption as well as runtime

Architecture might be heterogeneous,

complicating scheduling

Tasks may differ in execution speed or power

consumption, e. g. due to instruction mix

Static scheduling pays off since application runs

for years in a large number of devices

For optimal schedule, solve (mixed) integer linear

program (MILP/ILP)

Contributions

We present a static scheduling algorithm for a

set of tasks on a heterogeneous platformwith

frequency scaling, to meet a deadline and

minimize energy consumption, given that the

tasks are of different types and thus have

different power and speed profiles on this

platform.

We extend the scheduling algorithm to

situations where an energy budget per round or

an average power budget is given, and the

makespan for this round is minimized.

We perform experiments with accurate profiles

of ARM’s big.LITTLE architecture

Streaming Task Graph

Each task does a specific job, input tasks take input,

follow-up tasks areprovidedwith results fromprede-

cessors. All tasks are activated repeatedly, as the in-

put data repeatedly arrives, i. e. forms a data stream.

Figure 1. Left: A streaming task graph. Right: The steady state

of the streaming pipeline (rectangle) consists of n independent
(instances of) streaming tasks.

Further reading
N. Melot et al., ”Fast Crown Scheduling Heuristics for Energy-Efficient

Mapping and Scaling of Moldable Streaming Tasks on Many-Core Sys-

tems,” ACM TACO, vol. 11, no. 4, pp. 62:1–62:24, 2015.

N. Melot et al., ”Co-optimizing Core Allocation, Mapping, and DVFS in

StreamingProgramswithMoldable Tasks for Energy-Efficient Execution

onManycore Architectures,” Proc. ACSD 2019, to appear June 2019.

Crown Scheduling

In crown scheduling, a task is mapped to a particular

processor group, which lowers scheduling complex-

ity. Possible allocations thus are powers of 2. More-

over, each task is assigned an operating frequency

during scheduling.

Figure 2. Top: A binary crown for p = 8 cores of 2 different
types, where the core types are given by the color coding

(orange = A15-cores (big), green = A7-cores (LITTLE)). The

boldface numbers 1, . . . , 15 show the processor group indices.

Bottom: Example crown schedule for an 8-core machine

Optimization problems for scheduling n tasks to p
coreswithsdiscrete frequency levels (xi,j,k = 1 if task
j is mapped to core group i at frequency level fk):

Variables:

binary xi,j,k, i = 1..2p − 1, j = 1..n, k = 1..s
real Tmax

(1) Min. energyE for given deadlineM
min E
∀l : Tl ≤ M

(2)Min. makespan Tmax for energy budgetEmax

min Tmax

∀l : Tl ≤ Tmax

E ≤ Emax

(3)Min. makesp. Tmax for av. power budgetPavg

min Tmax

∀l : Tl ≤ Tmax

E ≤ Pavg · Tmax

Additional constraints for all targets

∀j : ∑
i,k xi,j,k = 1

∀j : ∑
i:pi>Wj

∑
k xi,j,k = 0

Figure 3. (M)ILPs for different optimization targets

(“scenarios”). Tl signifies the runtime of core l.

Experiments

40 synthetic task sets of varying cardinality

(10–80 tasks), 5 different task types

Real frequencies and power consumption values

for the ARMbig.LITTLE architecture

TAS: Task type-aware approach for sequential

tasks (Keller &Holmbacka 2017)

TIP: Task type-ignorant crown scheduler for

parallelizable tasks (Melot et al. 2015)

TAP: Task-type aware crown scheduler for

parallelizable tasks

Implementation in Python with Gurobi solver, 5

minute wall clock timeout for each (M)ILP

Results

Table 1. Runtime, timeout occurrences and number of

infeasible models for all scenarios and scheduling approaches

scenario scheduling runtime [min] #timeouts #infeasible

1

TAP 563 6 0

TAS 637 7 4

TIP 254 2 0

2

TAP 764 9 0

TAS 797 9 2

TIP 1383 15 0

3

TAP 683 8 0

TAS 733 9 0

TIP 1653 18 0

Table 2. Results for scenario 1, relative to TAP

scheduling task set card. makespan energy #deadline viol.

TAS

10 1.000 1.046

20 1.000 1.001

40 1.000 1.000

80 1.000 1.000

total 1.000 1.008

TIP

10 1.246 1.259 7

20 1.225 1.316 8

40 1.157 1.313 9

80 1.109 1.341 8

total 1.184 1.307 32

Scenario 1 (minE,M given):

TAP vs. TAS: advantage TAP for small task sets

(feasible schedule in any case), tasks executed

sequentially anyways for larger task sets

TAP vs. TIP: lower makespan (more pronounced

for small task sets), lower energy consumption

(more pronounced for larger task sets), TIP:

deadline violation in 80% of all cases

10 20 40 80
0

0.5

1

1.5

task set cardinality

m
ak
es
p
an

sequential
task type-ignorant

Figure 4. Averagemakespan for sequential and task

type-ignorant scheduling relative to averagemakespan for

parallel scheduling in scenario 2

Scenario 2 (min makespan,E given):

TAP vs. TAS: same behavior as for scenario 1,

relative performance of TAP better

TAP vs. TIP: TAP’s relative performance even

better than for scenario 1

Scenario 3 (min makespan, Pavg given):

TAP vs. TAS: TAP still better for small task sets,

feasible solution can always be found (due to

nature of constraints)

TAP vs. TIP: lower makespan due to TIP

overestimating energy consumption and thus not

exploiting power budget


